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Application of Predictor Feedback to Compensate
Time Delays in Connected Cruise Control

Tamás G. Molnár, Wubing B. Qin, Tamás Insperger, and Gábor Orosz

Abstract— In this paper, we investigate a vehicular string
traveling on a single lane, where vehicles use connected cruise
control to regulate their longitudinal motion based on data
received from other vehicles via wireless vehicle-to-vehicle com-
munication. Assuming digital controllers, the sample-and-hold
units introduce time-periodic time delays in the control loops and
the delays increase when data packets are lost. We investigate
the effect of packet losses on plant and string stability while
varying the control gains and determine the minimum achievable
time gap below which stability cannot be achieved. We propose
two predictor feedback control strategies that overcome the
destabilizing effect of the time delay caused by the sample-and-
hold unit and packet losses.

Index Terms— Connected cruise control, predictive control,
stability analysis, time delay.

I. INTRODUCTION

FEEDBACK loops are always associated with certain time
delays due to the finite speed of sensing, data processing,

and actuation, and time delays are often considered to be the
source of instability in dynamic systems. A promising way of
stabilizing unstable time delay systems is the application of
predictor feedback control strategies [1]. The main concept
of predictor feedback is that the actual (delay-free) state of
the system is predicted and used for feedback instead of the
delayed state obtained from measurements or observers. The
prediction can be based on the solution of an internal model
of the dynamic system, which results in the so-called finite
spectrum assignment (FSA) technique [2]–[5]. If the internal
model is a perfect representation of the actual system, then
the delay-free state can exactly be predicted, and a perfect
implementation of the control law reduces the closed loop
system to a delay-free system [2], [6]–[11]. This way, predictor
feedback has the potential to stabilize systems with time
delays.
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Time delays play a crucial role in the dynamics of vehicular
traffic. In the case of human-driven vehicles, the reaction time
of the driver – ranging between 0.3 − 1.5 [s] – is the most
important source of time delay. This reaction time is often
the source of instabilities in traffic flow and may lead to con-
gestion or even cause accidents on the road. Since improving
safety and mobility of vehicular traffic is a major concern
today [12], advanced driver assistance systems (ADAS) were
developed to overcome these problems. ADAS must satisfy
two stability criteria with regards to the longitudinal dynamics
of the vehicles. On one hand, plant stability must be guaran-
teed, which is associated with safe driving along a prescribed
velocity profile. On the other hand, when a group of vehicles
forms a vehicular string, congestion waves traveling upstream
the traffic flow must be attenuated that is referred as string
stability [13]. String instability typically leads to the formation
of stop-and-go traffic jams [14], [15] that impacts mobility
negatively.

Several strategies have been proposed in the literature to
ensure plant and string stability. When using adaptive cruise
control (ACC), the vehicle is equipped with radars or cameras
to measure the distance headway and the velocity difference
between the vehicle and the preceding vehicle [16]. The sen-
sors used in ACC strategy may be supported (or substituted)
by wireless vehicle-to-vehicle (V2V) communication that
enables the vehicle to monitor the vehicle ahead even when
it is beyond the line of sight. (Note that the headway
and the velocity difference can also be calculated from
GPS signals.) V2V communication may also improve the
safety and mobility of traffic by providing information about
multiple vehicles ahead [17], [18]. In cooperative adaptive
cruise control (CACC), the members of a vehicular string
are equipped with ACC, but also obtain information about
the motion of a designated platoon leader using communi-
cation [19]–[21]. However, in real traffic situations, not all
vehicles are equipped with range sensors and since the range
of V2V communication is limited, the data about leader’s
motion might not be accessible to every member of the
vehicular string. Therefore, the concept of connected cruise
control (CCC) was introduced in [18], [22], and [23], where all
available V2V signals are utilized. This concept is applicable
even in the presence of human-driven vehicles in the string
and it can be used in realistic traffic scenarios. CCC can
be used to support human drivers, to supplement sensory
information, or to control the longitudinal motion of the
vehicle.

In this paper, we investigate an application of the
CCC concept while taking into account the intermittency in
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V2V communication. For example, dedicated short range com-
munication (DSRC) devices typically use the sampling period
100 [ms] to process the data during communication [24]–[26].
The sample-and-hold units used in digital controllers utilizing
DSRC information introduce time-varying time delays into
the control loop [27]. Disturbances during communication
may lead to loss of data packets, which increases the time
delay [28]. In this paper, we investigate the dynamics of
vehicular strings when the communication is subject to deter-
ministic packet loss scenarios. We investigate plant and string
stability while varying the control gains for different numbers
of consecutive packet losses and summarize our results using
stability charts. We also show that the time delay gives a
fundamental limit to the minimum achievable time gap, that
is, to the maximum achievable flux in the traffic flow. The
destabilizing effect of time delay on vehicle platoons was also
demonstrated in [18], [23], and [27]–[32].

The main contributions of this paper are two predictor feed-
back control strategies that eliminate the destabilizing effect
of the time-varying time delay. The first strategy estimates the
velocity and the distance of the vehicles based on the last
available data packets without requiring knowledge about the
dynamics of the vehicular string. Such prediction can be done
based on the history of GPS position and velocity contained by
basic safety messages (BSM) [24]–[26]. The second strategy
can be considered as an application of the FSA technique
to a discrete-time system [4], [33]. This requires a dynamic
model of the vehicles as the predicted state is obtained by
the integration of the model. We show that the predictors may
improve stability under intermittent communication and ensure
robustness against the variations of time delay due to packet
losses. Trade-off regarding using different predictors is also
pointed out.

The outline of the paper is the following. Section II intro-
duces the model of the vehicular string where the vehicles
are driven by CCC. In Section III, we analyze the effects of
the sample-and-hold units when digital controllers are used
by members of the vehicular string. In Section IV, we carry
out plant and string stability analysis. Section V demon-
strates the effect of packet losses in wireless communication.
In Sections VI and VII, we introduce two predictor feedback
control strategies to overcome the destabilizing effect of packet
losses and to compensate the processing delay of the digital
controller. Finally, we draw conclusions in Section VIII.

II. CONNECTED CRUISE CONTROL

In this paper, we consider a vehicular string on a single
lane as shown in Fig. 1. We assume identical vehicles such that
the motion of each member is controlled based on the position
and velocity data received from the vehicle immediately ahead.
This way, the analysis of the vehicular string can be simplified
to the analysis of the leader-follower configuration at the
bottom of Fig. 1. The headway h, the leader’s velocity vL,
and the follower’s velocity vF satisfy

ḣ(t) = vL(t) − vF(t). (1)

We assume that the follower’s acceleration can be adjusted
directly by the controller:

v̇F(t) = ades(t), (2)

Fig. 1. String of connected vehicles traveling on a single lane. The vehicular
string can be considered as the concatenation of the leader-follower pattern
shown below. The red dashed arrows indicate wireless vehicle-to-vehicle
communication.

Fig. 2. (a) The desired velocity (4)-(5) as a function of the headway.
(b) The saturation function (6).

where ades(t) denotes the control input. We use a proportional-
velocity (PV) controller widely used in the literature [18], [30]:

ades(t) = α
(
V

(
h(t)

) − vF(t)
) + β

(
W

(
vL(t)

) − vF(t)
)
. (3)

Here α and β denote the control gains, V (h) is the follower’s
desired velocity that depends on the headway, and W (vL) is a
saturation function. Note that several other control strategies
also exist [22], [34]–[43] and the analysis carried out in this
paper can also be applied to those controllers.

The controller (3) contains the range policy

V (h) =

⎧
⎪⎨

⎪⎩

0 if h ≤ hmin,

F(h) if hmin < h < hmax,

vmax if h ≥ hmax.

(4)

This states that the follower intends to stop if the headway
drops below the limit hmin. Once the headway exceeds the
limit hmax, the follower wants to travel with the maximum
speed vmax allowed by road traffic regulations. Between
these limits, the desired velocity increases monotonously
according to the function F(h). We prescribe F(hmin) = 0,
F(hmax) = vmax, F ′(hmin) = F ′(hmax) = 0 in order to achieve
smooth velocity and acceleration profiles. As an example,
we satisfy these conditions by the choice

F(h) = vmax

2

(
1 − cos

(
π

h − hmin

hmax − hmin

))
, (5)

see Fig. 2(a). Note that any other monotonous and sufficiently
smooth function F(h) could be used as well. Besides, other
range policies also exist, see [23], [34], [44]–[46].

When the leader’s velocity exceeds the maximum speed
vmax allowed by road traffic regulations, we switch off the
connected cruise control. We realize this by the saturation
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function

W (vL) =
{

vL if vL ≤ vmax,

vmax if vL > vmax,
(6)

that is displayed in Fig. 2(b).
From this point on, we assume vL ≤ vmax, where sys-

tem (1), (2), (3) has a unique equilibrium

V (h∗) = v∗
F = v∗

L. (7)

This equilibrium represents the desired uniform flow, where
each member of the vehicular string travels with the same
constant velocity V (h∗) while keeping a constant headway h∗.
The control gains α and β must be chosen such that we
guarantee the stability of the equilibrium.

III. APPLICATION OF A DIGITAL CONTROLLER

We assume that a digital controller is implemented to
realize the control law (3), thus the headway h, the leader’s
velocity vL, and the follower’s velocity vF are sampled
with sampling period �t . For dedicated short range com-
munication (DSRC) devices, the typical sampling period is
�t = 100 [ms]. We assume that the clocks of the leader and
the follower are synchronized, which can be achieved using
satellites. Thus, all headway and velocity data is available
at the same discrete time instants tk = k�t . Note that it
takes a certain amount of time for the leader to process the
sensed data and to transmit it, and for the follower to receive
data, to process it, and to use it for actuating the vehicle.
Therefore, at time instant tk , the controller is able to use
the data measured at the previous sampling instant tk−1. This
implies that the controller has a certain processing delay. The
control input is held constant by a zero-order-hold (ZOH)
unit along [tk, tk+1). Therefore, when a digital controller is
implemented, the control law (2) modifies to

v̇F(t) = ades(tk−1), t ∈ [tk, tk+1), (8)

where ades is given by (3). Equations (1), (3), (8) define
a continuous-time nonlinear system with piecewise constant
input. Correspondingly, the processing delay introduced by
the ZOH is time-periodic as shown in Fig. 3(a). During each
sampling period, the time delay increases linearly from �t ,
since ades(tk−1) is used at tk , to 2�t , since ades(tk−1) is still
used at tk+1. Note that since delayed states are available for
the follower instead of actual ones, there is a possibility to
improve control performance by estimating the actual state
via predictors, which will be discussed further below.

According to [47], the dynamics (1), (3), (8) can be con-
verted to a discrete-time map. In particular, we solve the
system along t ∈ [tk, tk+1) with the initial conditions at tk ,
which gives

[
h(k + 1)
vF(k + 1)

]

=
[

1 −�t
0 1

] [
h(k)
vF(k)

]
+

[
−1

2
α�t2

α�t

]

V
(
h(k − 1)

)

Fig. 3. The time delay caused by digital control: (a) without packet losses,
(b) when every n-th packet is received.

+
[

0
1

2
(α + β)�t2

0 −(α + β)�t

][
h(k − 1)
vF(k − 1)

]

+
[
−1

2
β�t2

β�t

]

W
(
vL(k − 1)

) +
[∫ tk+1

tk
vL(t)dt
0

]
, (9)

where h(k) = h(tk), vF(k) = vF(tk), vL(k) = vL(tk).
The stability of the uniform flow equilibrium (7) of sys-

tem (1), (3), (8) is equivalent to the stability of the fixed point
of the discrete-time map (9). Here, we restrict ourselves to
linear analysis, therefore we linearize (9), which gives
[

h̃(k + 1)
ṽF(k + 1)

]

=
[

1 −�t
0 1

] [
h̃(k)
ṽF(k)

]

+
[
−1

2
αV ′(h∗)�t2 1

2
(α + β)�t2

αV ′(h∗)�t −(α + β)�t

][
h̃(k − 1)
ṽF(k − 1)

]

+
[
−1

2
β�t2

β�t

]

ṽL(k − 1) +
[∫ tk+1

tk
ṽL(t)dt
0

]
, (10)

where h̃(t), ṽL(t), and ṽF(t) denote small fluctuations around
the equilibrium headway h∗ and equilibrium velocity V (h∗)
given by (7). From (4), the derivative V ′(h∗) reads

V ′(h∗) =

⎧
⎪⎨

⎪⎩

0 ifh∗ ≤ hmin,

F ′(h∗) ifhmin < h∗ < hmax,

0 ifh∗ ≥ hmax.

(11)

We assume sinusoidal fluctuations in leader’s velocity,

ṽL(t) = v
amp
L sin(ωt), (12)

since real fluctuations can be considered as an infinite sum
of harmonic functions. This way, the integral in (10) can be
written in the form

∫ tk+1

tk
ṽL(t)dt = β0ṽL(tk) + β2ṽL(tk−2), (13)
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where

β0 = cos(2ω�t) − cos(3ω�t)

ω sin(2ω�t)
, β2 = cos(ω�t) − 1

ω sin(2ω�t)
. (14)

If we define the state, the input, and the output of the linear
system (10) as

x(k) =
[

h̃(k)
ṽF(k)

]
, u(k) = ṽL(k), y(k) = ṽF(k), (15)

we can rewrite (10), (12) in the form

x(k + 1) = a0 x(k) + a1 x(k − 1)

+ b0 u(k) + b1 u(k − 1) + b2 u(k − 2),

y(k) = c x(k), (16)

where

a0 =
[

1 −�t
0 1

]
, a1 =

[
−1

2
αV ′(h∗)�t2 1

2
(α + β)�t2

αV ′(h∗)�t − (α + β)�t

]

,

b0 =
[
β0
0

]
, b1 =

[
−1

2
β�t2

β�t

]

, b2 =
[
β2
0

]
, c = [

0 1
]
.

(17)

Now we introduce the augmented state vector

X(k) =
[

x(k)
x(k − 1)

]
, (18)

such that (16) is written in the state-space representation

X(k + 1) = A1X(k) + B0u(k) + B1u(k − 1) + B2u(k − 2),

y(k) = C1X(k). (19)

Here the system, the input, and the output matrices read

A1 =
[

a0 a1
I 0

]
, B0 =

[
b0
o

]
, B1 =

[
b1
o

]
, B2 =

[
b2
o

]
,

C1 = [
c oT

]
, (20)

where 0 ∈ R
2×2 and I ∈ R

2×2 are the zero and the identity
matrices, respectively, o ∈ R

2 denotes the zero vector, and
T stands for transpose.

IV. PLANT AND STRING STABILITY

When applying connected cruise control for vehicular
strings, two stability criteria – plant and string stability – must
be fulfilled. Plant stability is related to the safety and collision
avoidance between vehicles, whereas string stability is associ-
ated with disturbance attenuation along vehicular strings and
ensuring smooth traffic flow. We present the stability analysis
of (19) in this section following the method shown in [27].

The system is plant stable if the follower is able to approach
leader’s constant velocity v∗

L. In the absence of fluctuations in
the leader’s velocity (ṽL(t) ≡ 0, u(k) = 0), the linear map (19)
simplifies to

X(k + 1) = A1X(k). (21)

Plant stability is guaranteed if all eigenvalues of A1 lie within
the unit circle in the complex plane. The eigenvalues are given
by the characteristic equation

det(zI − A1) = 0. (22)

Plant stability can be lost in three qualitatively different
ways: an eigenvalue crosses the unit circle at 1, an eigenvalue
crosses the unit circle at −1, a pair of complex conjugate
eigenvalues crosses the unit circle. The first case leads to
a non-oscillatory stability loss, while the last two lead to
oscillatory stability loss. The corresponding plant stability
boundaries are obtained for z = 1, or z = −1, or z = e±iθ

(i2 = −1, θ ∈ (0, π)). Substituting z = 1 and z = −1
into (22) while using (17) and (20), we get the plant stability
boundaries in the form

α = 0, (23)

α = − 2

�t
− β, (24)

respectively. Substituting z = eiθ into (22) while using (17)
and (20), and separating the real and the imaginary parts,
we obtain the third plant stability boundary parameterized
by θ ∈ (0, π):

α = 4 sin2 θ + 6 cos θ − 6

V ′(h∗)�t2 ,

β = 2 sin2 θ + cos θ − 1

�t
− 4 sin2 θ + 6 cos θ − 6

V ′(h∗)�t2 . (25)

Fig. 4(a) shows the plant stability boundaries in the
plane (β, α). We used hmin = 5 [m], hmax = 35 [m],
vmax = 30 [m/s] to define the range policy, and investigated
the uniform flow equilibrium given by h∗ = 20 [m], v∗

L =
v∗

F = 15 [m/s], which imply V ′(h∗) = π/2 [1/s]. We keep
these parameters fixed throughout the paper. The dashed,
the dotted, and the solid red lines correspond to the plant sta-
bility boundaries associated with z = 1, z = −1, and z = eiθ ,
respectively. They enclose the light gray-shaded plant stable
domain. The eigenvalue plots in Fig 4(b) show the eigenvalues
of matrix A1 for different plant stability losses (cases A, B,
and C) and for a plant stable scenario (case D).

The system is string stable, if the follower is able to atten-
uate fluctuations in the leader’s velocity. This implies restric-
tions on the amplification from input to output. Therefore,
we calculate the transfer function corresponding to (19) using
Z transform, which gives

�(z) = C1(zI − A1)
−1

(
B2z−2 + B1z−1 + B0

)
. (26)

The corresponding magnitude ratio is

M(ω) =
∣
∣
∣�

(
eiω�t

)∣
∣
∣ , (27)

and the detailed formula of M(ω) is given by (66)-(67)
in Appendix. The necessary and sufficient condition for string
stability is given by

M(ω) < 1, ∀ ω > 0. (28)

String stability may be lost in different frequency domains
as the maximum of M(ω) goes above 1. Considering ωcr to be
the critical frequency where string stability is lost, three kinds
of string stability boundaries can be distinguished: ωcr = 0,
ωcr = (2k +1)π/�t with k ∈ N, and when ωcr is not equal to
either of these. Since M(0) = 1 and M ′(0) = dM/dω (0) = 0
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Fig. 4. (a) Stability chart in the (β, α)-plane of the control gains for
�t = 100 [ms]. Red and blue lines indicate plant and string stability bound-
aries, respectively, whereas the light gray region is plant stable, the dark
gray region is string stable. (b) The eigenvalues of the system matrix A1
corresponding to points A-D. (c) The magnitude ratio M(ω) corresponding
to points D-H. The intersection points I, II, and III in panel (a) are used
when deriving the critical sampling time �tcr . (d) Numerical simulations
corresponding to points d and e.

always hold, the string stability boundaries for ωcr = 0 are
given by M ′′(0) = 0, which yields

α = 0, (29)

α = 2
(
V ′(h∗) − β

)

1 − (V ′(h∗))2 �t2/6
. (30)

At ωcr = (2k+1)π/�t , condition M(ωcr) = 1 gives the string
stability boundary

β =
((

V ′(h∗)2�t2

(2k + 1)2π2 − 1

)
α2 − 4

�t
α − 4

�t2

)
1

2α + 4/�t
.

(31)

For ωcr > 0, ωcr 	= (2k + 1)π/�t , equations

M(ωcr) = 1, M ′(ωcr) = 0 (32)

define the string stability boundary, which can be obtained
numerically when varying the parameter ωcr .

In Fig. 4(a), dashed, dotted, and solid blue lines indicate
string stability boundaries for ωcr = 0, ωcr = (2k + 1)π/�t ,
and ωcr > 0, ωcr 	= (2k + 1)π/�t , respectively. The
string stable regions are shaded as dark gray, while the
magnitude ratios M(ω) are depicted in Fig. 4(c) for different
string stability losses (cases F, G, and H), for a string stable
scenario (case D), and a string unstable scenario (case E).
Fig. 4(d) shows numerical simulations for a string stable
and a string unstable case corresponding to points d and e
in Fig. 4(c), respectively. Note that the string but not plant
stable regions at the top and the bottom of Fig. 4(a) are
physically irrelevant, hence we do not depict them in what
follows. Accordingly, the dotted stability boundaries corre-
sponding to z = −1 and ωcr = (2k + 1)π/�t cannot
be observed experimentally. When designing the controller,
the gains α and β should be chosen from the intersection of
the plant and string stable domains in order to guarantee safe
driving and smooth traffic flow.

The sampling time �t has a significant effect on the size of
the plant and string stable region. If we increase �t , the time
delay of the system increases and the stable region becomes
smaller. The stable region disappears at the critical case

�tcr = 1

3V ′(h∗)
, (33)

where in Fig. 4(a) the three intersection points marked by I, II,
III coincide. The derivation of (33) is discussed in Appendix in
detail. Assuming V ′(h∗) = π/2 [1/s], we get �tcr = 212 [ms]
for the critical sampling period. If a larger sampling time is
used, �t > �tcr, the stable region disappears, and no pair
of control gains (β, α) can guarantee both plant and string
stability. Note that Th = 1/V ′(h∗) can be interpreted as the
time gap between the leader and follower. Thus, (33) gives a
fundamental limit how close the vehicles can travel to each
other for a given �t and determines the maximum achievable
flux in the traffic flow.

We also remark that one may approximate the time-varying
time delay by its average τ̄ . Thus, the continuous-time approx-
imation of (3), (8) reads

ades(t) = α
(
V

(
h(t − τ̄ )

) − vF(t − τ̄ )
)

+ β
(
W

(
vL(t − τ̄ )

) − vF(t − τ̄ )
)
. (34)

The effect of this control law was analyzed in [18], where
the critical time delay was shown to be τ̄cr = 1/(2V ′(h∗)),
which is in agreement with (33) considering that τ̄ = 3/2 �t ,
see Fig. 3(a).

V. PACKET LOSSES IN VEHICLE-TO-
VEHICLE COMMUNICATION

As mentioned above, when using wireless vehicle-to-vehicle
communication in real traffic situations, data is transmitted
intermittently. Moreover, some data packets sent by one mem-
ber of the vehicular string may not reach other vehicles.
Consequently, the most recent data about the leader’s velocity
and headway may not be available for the controller of the
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follower and the controller must use the data from previously
delivered packets. That is, packet losses increase the effective
time delay in the control loop that has a significant adverse
effect on stability [28]. Here we analyze the effect of such
packet losses.

We assume that only the leader’s velocity and the headway
data is subject to packet loss, since the follower’s velocity is
measured on board and is available at each time step. During
the analysis, we restrict ourselves to cases where packet losses
occur in a deterministic fashion. Note, however, that in real
traffic, the packet losses occur in a stochastic manner, which
yields stochastically varying time delays. For the analysis
of systems with stochastic delays, the reader is referred
to [28] and [48]. Nevertheless, assuming deterministic packet
loss scenarios is only considered to simplify the analysis, while
the predictor can also be used in the case of stochastic packet
loss scenarios.

Let us assume that the communication suffered τ (k) − 1
consecutive packet losses up to the k-th time instant, i.e., the
last headway and leader’s velocity data was delivered τ (k)
time steps earlier. Thus, using the controller (3) we obtain

v̇F(t) = ades(tk−1), t ∈ [tk, tk+1),

ades(tk−1) = α
(
V

(
h(tk−τ (k))

) − vF(tk−1)
)

+ β
(
W

(
vL(tk−τ (k))

) − vF(tk−1)
)
. (35)

Note that by substituting τ (k) = 1 (corresponding to no packet
loss), we get back (3), (8).

According to (35), the packet losses increase the effective
time delay in the system, which is demonstrated in Fig. 3
for the case where every n-th packet is received periodically.
The time delay associated with the leader’s velocity and
the headway data is n�t-periodic and increases from �t
to (n + 1)�t in each period as shown in Fig. 3(b). This
way, the principal period of the system becomes n�t . Note,
however, that the follower’s velocity is not subject to packet
losses, and its time delay is still varying between �t and 2�t
as shown in Fig. 3(a).

In order to analyze the dynamics and stability properties
of (1), (35), we integrate the equations along [tk, tk+1) and
assume the sinusoidal fluctuations (12) in the leader’s velocity.
After linearization we get the discrete-time map

x(k + 1) = a0 x(k) + ã1 x(k − 1) + ãτ x(k − τ (k))

+ b0 u(k) + b2 u(k − 2) + bτ u(k − τ (k),

y(k) = c x(k), (36)

which is similar to (16) that governs the follower’s motion in
the absence of packet losses. Matrices a0, b0, b2, c are the
same as defined in (17), whereas the others read

ã1 =
[

0
1

2
(α + β)�t2

0 −(α + β)�t

]

, ãτ =
[
−1

2
αV ′(h∗)�t2 0

αV ′(h∗)�t 0

]

,

bτ = b1. (37)

Note that the matrix a1 given by (17) splits into two parts
as a1 = ã1 + ãτ , where ã1 is associated with the follower’s
velocity unaffected by packet losses, and ãτ is related to the
headway subjected to packet loss. The effect of losing the

leader’s velocity data is represented by the term u(k − τ (k))
in (36).

Let n − 1 denote the maximum number of consecutive
packet losses, i.e., assume that in the worst case scenario the
controller needs to wait n sampling periods for a new data
packet to arrive. Then, the discrete time delay τ (k) increases
from 1 to n during the sampling periods. Choosing the size of
the state vector according to n, system (36) can be represented
in augmented state-space form by

X(k + 1) = Aτ (k)X(k) + B0u(k) + B2u(k − 2)

+ Bτ u(k − τ (k)),

y(k) = Cτ X(k), (38)

where

X(k) =

⎡

⎢
⎢
⎢
⎣

x(k)
x(k − 1)

...
x
(
k − n

)

⎤

⎥
⎥
⎥
⎦

, B0 =

⎡

⎢
⎢
⎢
⎣

b0
o
...
o

⎤

⎥
⎥
⎥
⎦

,

B2 =

⎡

⎢
⎢⎢
⎣

b2
o
...
o

⎤

⎥
⎥⎥
⎦

, Bτ =

⎡

⎢
⎢⎢
⎣

bτ

o
...
o

⎤

⎥
⎥⎥
⎦

,

Aτ (k) =

⎡

⎢
⎢
⎢⎢
⎢
⎣

a0 ã1 0 · · · 0 ãτ 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤

⎥
⎥
⎥⎥
⎥
⎦

,

Cτ = [
c oT · · · oT

]
, (39)

cf. (18), (19), (20). Note that matrices Aτ (k), B0, Bτ , B2,
and Cτ consist of n + 1 blocks in each row or column and
ãτ is located in the τ (k) + 1-st column, i.e., it changes its
location at each time step based on the value of the delay.
As mentioned above, we restrict ourselves to the analysis of
deterministic packet loss scenarios when every n-th packet is
received periodically.

In order to analyze plant and string stability, the evolution
of the system must be described by a discrete-time map
along the principal period n�t [49]. We construct this map
by applying n successive maps at each step of the period.
If the packets are received at the k-th and the (k + n)-th time
instant, the evolution of the system along

[
k�t, (k + n)�t

)

is governed by map (38) with increasing delay in each step.
Therefore, we use map (38) n times successively assuming
τ (k) = 1, τ (k + 1) = 2, . . . , τ (k + n − 1) = n, respectively,
which yields

X(k + 1) = A1X(k) + B0u(k) + B2u(k − 2)

+ Bτ u(k − 1),

X(k + 2) = A2X(k + 1) + B0u(k + 1) + B2u(k − 1)

+ Bτ u(k − 1),
...

X(k + n) = AnX(k+n−1) + B0u(k+n−1) + B2u(k+n−3)

+ Bτ u(k − 1),

y(k) = Cτ X(k). (40)
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Fig. 5. Stability charts in the (β, α)-plane of the control gains for �t = 100 [ms] when every n-th packet is received; (a-d) without predictor, (e-h) with
predictor (45)-(46) using m = 1, (i-l) with predictor (45)-(46) using m = 2, w1 = 1/2. The same color and shading scheme is used as in Fig. 4.

We analyze plant stability the same way as shown
in Section IV. We substitute u(k) = 0 into (40) to obtain

X(k + n) = AX(k), (41)

where A = ∏n
j=1 A j . The eigenvalues of A must be located

within the unit circle of the complex plane to ensure plant sta-
bility. We calculate the plant stability boundaries analytically
by solving the characteristic equation for the control gains
given in the form of (22) while substituting A1 with A and
assuming z = 1, z = −1, and z = eiθ .

We carry out the string stability analysis by applying
Z-transform to (40) that yields the transfer function

�n(z) = Cτ (znI − A)−1 Gn(z), (42)

where Gn(z) is given by the recursive rule

G1(z) = B0 + B2z−2 + Bτ z−1,

Gk(z) = AkGk−1(z) + B0zk−1 + B2zk−3 + Bτ z−1, (43)

for k = 2, . . . , n. The ωcr = 0 and the ωcr = (2k + 1)π/�t
string stability boundaries can be calculated analytically the
same way as discussed in Section IV. However, due to
the algebraic complexity of the transfer function (42)-(43),
the 0 < ωcr 	= (2 k + 1)π/�t string stability boundary
cannot be obtained analytically. Instead, we create a grid
in the (β, α)-plane, and we check in each point whether∣
∣�n

(
eiω�t

)∣∣ < 1 holds for ω ∈ (0, 2π/�t).
The stability charts are presented in the (β, α)-plane for

n = 2, 3, 4 in Fig. 5(b,c,d), where we used the same color

TABLE I

DIMENSIONLESS CRITICAL SAMPLING PERIOD

WHEN EVERY n-TH PACKET IS RECEIVED

and shading scheme as in Fig. 4(a). It is important to note that
the controller cannot anticipate how frequent the packet losses
will be. Therefore, the control parameters must be chosen such
that the system is stable for any packet loss scenario (for any
reasonable value of n). We can see that the stable domains
vary significantly as n increases, therefore it is more difficult
to find a pair of control gains that is stable for all packet loss
scenarios. If n is increased further (n > 4), the dark grey
shaded string stable region shrinks and disappears at n = 10.

The size of the stable region depends on the sampling period
as discussed in Section IV. Above a critical sampling period,
�t > �tcr, the plant and string stable domain vanishes. For
different packet loss scenarios, that is, for different values of n,
the critical sampling period can be calculated by locating the
intersection points of the string stability boundaries, and deter-
mining the sampling period where they coincide; see details of
the n = 1 case in Appendix. The first row of Table I shows the
critical sampling period for n = 1, 2, 3, 4, respectively. It is
important to note that the more frequent the packet losses get,
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the smaller the critical sampling period becomes. Hence
frequent packet losses destabilize the system if the sampling
time is not small enough. Note that the results in Table I also
show that for a given �t , the minimum achievable time gap
Th = 1/V ′(h∗) between the vehicles increases as the packets
are lost, that is, the maximum achievable flux in the traffic
flow decreases.

In addition, it is important to note that large control gains
imply large acceleration that the follower’s engine may not
be able to realize or may not be permitted in the presence of
human passengers. When the controller gets into saturation,
the linear stability analysis is not valid any more. The min-
imum gains that make the system string stable are shown
in Fig. 5 by enlarging the stable region around the origin.
The closest string stable points to the origin (where α2 +β2 is
minimal) are also indicated by red stars on the inlets. Notice
that the smallest available gains increase when packets are lost.

VI. COMPENSATION OF PACKET LOSSES VIA PREDICTION

In this section, we propose a method to compensate for
the destabilizing effects of the increasing time delay induced
by packet losses. The method is based on the prediction
of the leader’s velocity and the headway data lost during
communication. Accordingly, we use a predicted headway hP

and a predicted leader’s velocity vP
L in the control law:

v̇F(t) = ades(tk−1), t ∈ [tk, tk+1),

ades(tk−1) = α
(

V
(
hP(tk−1)

) − vF(tk−1)
)

+ β
(

W
(
vP

L(tk−1)
) − vF(tk−1)

)
, (44)

cf. (35).
To predict the leader’s velocity we use earlier data. More

precisely, we propose to compute the predicted leader’s veloc-
ity as a weighted sum (average) of the last m available leader’s
velocity data:

vP
L(tk−1) =

m∑

i=1

wivL(tk−τi (k)), (45)

where the weights are indicated by wi and can be chosen
when designing the predictor. The weights wi must satisfy∑m

i=1 wi = 1 in order to preserve the equilibrium veloc-
ity of the uniform flow for the nonlinear system (1), (44).
Parameter m denotes how many previously received data pack-
ets are used for computing the predicted leader’s velocity –
here we keep this fixed, independent of time. Parameters τi (k)
indicate how many time steps earlier were the particular data
packets received. For instance, if at tk the last two leader’s
velocity data arrived 3 and 7 time steps ago, then τ1(k) = 3
and τ2(k) = 7, and using both of these in the prediction
corresponds to m = 2. Note that the data packets may not be
evenly distributed in time and any packet loss scenario can be
described by τi (k). In the special case where every n-th packet
is received and the last packet arrived τ (k) time steps earlier,
τi (k) = τ (k) + (i − 1)n, i = 1, 2, . . . , m.

By definition, the headway is the difference of the distances
traveled by the leader and the follower. We can predict this

Fig. 6. Illustration of the prediction and the control processes with prediction
algorithm (45)-(46) and control law (44) for m = 1, w1 = 1, τ1(k) = 4.
(a) (b) and (c) Green dots and red crosses show received and lost data packets,
respectively, black dots show predicted data. Dashed arrows indicate the data
used for leader’s velocity prediction, whereas the shaded areas and the solid
arrows show the data used for headway prediction. (d) Dashed-dotted arrows
show which data is used by the controller to set the follower’s acceleration.

by integrating (1). The key point is how we approximate the
integrals of vL(t) and vF(t). Since the controller prescribes
a piecewise constant acceleration for the follower, the veloc-
ity vF(t) is piecewise linear. Hence, we predict the distance
that the follower travels by approximating the area under vF(t)
by trapezoids; see Fig 6(a). Whereas we predict the distance
that the leader travels by approximating the area under vL(t)
by a rectangle using the predicted velocity vP

L; see Fig 6(b).
The predicted headway becomes

hP(tk−1) = h(tk−τ (k)) + vP
L(tk−1)(τ (k) − 1)�t

−
τ (k)−1∑

j=1

vF(tk− j−1) + vF(tk− j )

2
�t, (46)

for τ (k) ≥ 2. For τ (k) = 1, no packet is lost and we
omit the sum in (46) to get hP(tk−1) = h(tk−1). Thus no
headway prediction is done when a packet is received. Note,
however, that the leader’s velocity is predicted by (45) even
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for τ (k) = 1, so there is a possibility to improve string stability
properties even when no packets are lost.

The method (45)-(46) to predict the leader’s velocity and
the headway is illustrated in Fig. 6 for the special case
m = 1, w1 = 1, τ1(k) = 4, that is, when the predictor
relies on the data obtained 4 sampling periods earlier. Blue
curves show the follower’s velocity, the leader’s velocity,
the headway, and the follower’s acceleration as a function
of time. Green dots indicate when packets are received and
red crosses stand for packet losses. In case of packet losses,
the leader’s velocity and the headway are predicted as shown
by the black dots. The choice m = 1 yields that the leader’s
velocity is predicted to be the same as the last available data:
vP

L(tk−1) = vL(tk−τ (k)), see the dashed arrows in Fig. 6(b).
This way, the controller assumes that the leader’s velocity
does not change during packet losses, and the distance that
the leader travels is computed accordingly. The headway is
predicted by (46) by adding the difference of the distances that
the leader and the follower travel during packet losses to the
last available headway data; see the shaded areas and the solid
arrows in Fig. 6(a,b,c). The dashed-dotted arrows in Fig. 6(d)
show how the follower’s acceleration is set according to the
control law (44).

Another special case of predictor (45)-(46) is when m = 2,
that is, the predictor uses the last two available leader’s
velocity values obtained τ1(k) and τ2(k) time instants earlier.
Then, the leader’s predicted velocity in Fig. 6(b) changes to
vP

L(tk−1) = w1 vL(tk−τ1(k)) + w2 vL(tk−τ2(k)), where w2 =
1 − w1. If w1 = 1 and w2 = 0, we get back the case m = 1.
If w1 = w2 = 1/2, the leader’s velocity is predicted to be
the average of the last two available leader’s velocity data,
and the headway predictor (46) uses this average velocity to
calculate the distance that the leader travels during packet
losses. It is also possible to predict the leader’s velocity
by linear extrapolation from the last two available data by
choosing w1 = (τ2(k) − 1)/(τ2(k) − τ1(k)) and w2 = 1 − w1.
Note that the choice of m and wi does not modify the
prediction of the distance that the follower travels shown by
the shaded area in Fig 6(a).

Now we solve (1), (44)-(46) with (12) along [tk, tk+1), and
linearize the resulting discrete-time map, which yields

X(k + 1) = AP
τ (k)X(k) + B0u(k) + B2u(k − 2)

+
m∑

i=1

wi BP
τ (k)u

(
k − τi (k)

)
, (47)

where

AP
τ (k) = Aτ (k) + �Aτ (k), BP

τ (k) = Bτ + �Bτ (k), (48)

and

�Aτ (k) =

⎡

⎢
⎢
⎢⎢
⎢
⎣

0 aP/2 aP · · · aP aP/2 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤

⎥
⎥
⎥⎥
⎥
⎦

,

�Bτ (k) =

⎡

⎢
⎢
⎢
⎣

bP
τ (k)

o
...
o

⎤

⎥
⎥
⎥
⎦

, aP =
[

0
1

2
αV ′(h∗)�t3

0 −αV ′(h∗)�t2

]

,

bP
τ (k) =

[
−1

2
(τ (k) − 1)αV ′(h∗)�t3

(τ (k) − 1)αV ′(h∗)�t2

]

, (49)

where there are τ (k) nonzero blocks in the first row of �Aτ (k),
cf. (38), (39).

The stability analysis in the presence of the predictor can
be done the same way as discussed in Section IV. The second
and third rows of Fig. 5 show the stability diagrams using
predictor (45)-(46) with m = 1 and with m = 2, w1 = 1/2,
respectively, for n = 1, 2, 3, 4. The color and shading scheme
is the same as used in Fig. 4(a). We can assess the effect
of predictor (45)-(46) by comparing the rows of Fig. 5.
Based on the first row of Fig. 5, the plant stable domains
vary significantly for the different packet loss scenarios when
no predictor is used. In comparison, the second and third
rows of Fig. 5 show that these domains remain exactly the
same using predictor (45)-(46) as for no packet loss and no
prediction, cf. Fig. 5(a). This implies that plant stability can
be preserved by implementing predictors on the headway. The
reason of the robustness of plant stability with respect to
packet losses is the following. During plant stability analysis,
we investigate stability in the absence of the leader’s velocity
fluctuations. Thus, only the headway needs to be predicted in
order to improve plant stability. Since the follower’s velocity is
not affected by packet losses, it is available for the controller
and can be integrated to obtain the exact headway for any
packet loss scenario. This leads to the preservation of plant
stability properties.

According to the first and second rows of Fig. 5, the choice
m = 1 fails to increase the size of the string stable region.
However, by choosing m = 2, the weight w1 can be used as
a design tool for enhancing string stability properties. Based
on several case studies, the optimal choice of w1 in terms
of the size of the string stable region is around w1 = 1/2;
see the third row of Fig. 5. A heuristic argument supporting
this choice is the following. When every n-th packet is
delivered, the relation between vP

L(tk−1) and vL(tk−τ (k)) can
be characterized by the transfer function �P(z) = w1+w2 z−n

where w2 = 1−w1. Consequently, prediction introduces a gain
and a phase shift in the leader’s velocity. The square of the gain
is obtained as

∣
∣�P

(
eiω�t

)∣∣2 = 1−4 w1(1−w1) sin2 (nω�t/2),
which is minimal for w1 = 1/2. Indeed, we see improvements
of string stability when applying the predictor with m = 2,
w1 = 1/2 in the third row of Fig. 5. The string stable regions
become larger compared to the first row of Fig. 5, especially
for frequent packet losses (n = 3, 4).

It is important to highlight that for m = 2, the weight
w1 = 1/2 is optimal in terms of the size of the stable region.
This choice may not be optimal in terms of the minimal gains
that make the system string stable. According to the second
and third rows of Fig. 5, smaller gains can be achieved for
w1 = 1 (which gives case m = 1) than for w1 = 1/2 as
highlighted by the inlets. We can also analyze the effect of
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Fig. 7. The dimensionless critical sampling period �tcr/Th as a function
of the weight w1 used for prediction with m = 2 when every n-th packet is
received (a) for predictor (45)-(46), (b) for the improved predictor (64).

prediction on the critical sampling period. Fig. 7(a) presents
analytical results obtained by computer algebra for the dimen-
sionless critical sampling period �tcr/Th as a function of the
weight w1. It can be seen that for n = 1, 2 the functions are
monotonously increasing, whereas for n = 3, 4 the curves
peak at w1 = 0.59 and w1 = 0.74, respectively. Based
on Fig. 7, in order to increase the critical sampling period
for any packet loss scenario (for all n), the best strategy is to
choose w1 as big as possible. The value of the dimensionless
critical sampling period �tcr/Th converges to 1/(n + 1) as
w1 → ∞ as spelled out in the second row of Table I. For
a given sampling period, we can achieve a smaller time gap
between the vehicles and a larger flux in the traffic flow by
choosing a large w1.

Finally we remark that although string stability can
be preserved for large sampling periods using a large
weight w1, the string stable region itself becomes very small.
In such cases, the control parameters α and β must be set very
accurately to realize stable control. Consequently, there is a
trade-off when choosing the weight: w1 = 1/2 gives larger
stable region but with smaller critical sampling period, and
w1 → ∞ gives large critical sampling period but small stable
region. A similar trade-off was observed for a controller based
on acceleration feedback proposed in [22]. Using that method
it was possible to increase the critical time delay to infinity
but with the cost that the size of the stable region becomes
infinitely small.

VII. COMPENSATION OF THE PROCESSING DELAY

In this section, we present another idea to improve plant and
string stability properties in connected vehicle systems. First,
we show this concept for the case where every data packet is
received. Recall that using zero-order-hold introduces a time-
periodic time delay in connected cruise control, cf. Fig. 3. The
effective time delay is a saw-tooth function that increases from
�t in each period. Here, we call the delay �t at the minima of
the saw-tooth function as processing delay. Now we introduce
an algorithm to compensate the processing delay introduced
by the zero-order-hold.

The processing delay is caused by the fact that it takes a
certain amount of time to process and transmit the sensed
data and to receive the data, process it and use it for actuating

the follower. Thus, at time tk , only the control input ades(tk−1)
is available, which is calculated from the data measured
at tk−1. In other words, ades(tk) cannot be used in control
law (8) due to the processing delay. On the other hand, since
the control input applied along [tk−1, tk) is known to the
follower, it can be used to calculate the state at tk provided
that an accurate model about the motion of the vehicles is
available. This way, the state is predicted one sampling period
ahead in order to compensate the processing delay.

We propose the following predictor feedback control for the
connected vehicle system:

v̇F(t) = ades(tk−1), t ∈ [tk, tk+1),

ades(tk−1) = α
(

V
(
hQ(tk)

) − v
Q
F (tk)

)

+ β
(

W
(
v

Q
L (tk)

) − v
Q
F (tk)

)
, (50)

cf. (35) and (44). As for the leader, we assume that its velocity
does not change along [tk−1, tk). We use the last available
leader’s velocity data as predicted value v

Q
L (tk), since the

equation of motion is unknown for the leader and model-
based prediction cannot be made. The follower’s predicted
velocity v

Q
F (tk) and the predicted headway hQ(tk) are obtained

by assuming that over [tk−1, tk) the follower indeed realizes
the desired acceleration that is ades(tk−2) according to (50).
Integrating (1) and (50) over [tk−1, tk) we get the predicted
state as

v
Q
F (tk) = vF(tk−1) + ades(tk−2)�t,

v
Q
L (tk) = vL(tk−1),

hQ(tk) = h(tk−1) + (
vL(tk−1) − vF(tk−1)

)
�t

− 1

2
ades(tk−2)�t2. (51)

Note that more detailed vehicle models such as the one in [23]
could also be used instead of (50) for prediction.

Control law (50)-(51) can be considered as an application of
the predictor feedback control technique called finite spectrum
assignment (FSA) [1], which was developed for time delay
compensation in feedback loops. Since here the control input
is piecewise constant, the effective time delay cannot be
completely compensated: it remains a time-varying saw-tooth
function as in Fig. 3. However, using the control law (50)-(51)
the saw-tooth can effectively be “pushed down” to zero for the
follower’s velocity using model-based prediction.

Similarly to the analysis in Section III, we derive a discrete-
time map corresponding to (1), (50)-(51). First, we substitute
the predicted headway and velocities in (51) into the control
law (50). At this point, we can recognize that the desired
acceleration ades(tk−1) depends on its value ades(tk−2) at the
previous sampling instant. Therefore, we augment the state of
the system by the follower’s acceleration: ades(k −1) becomes
an element of the state vector.

Accordingly, after solving (1), (50)-(51) along [tk, tk+1),
linearizing the resulting map, and substituting the sinusoidal
fluctuations (12), we get

x(k + 1) = a0 x(k) + b0 u(k) + b1 u(k) + b2 u(k − 2),

y(k) = c x(k), (52)
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Fig. 8. Stability charts in the (β, α)-plane of the control gains for �t = 100 [ms] when every n-th packet is received; (a-d) using controller (50)-(51),
(e-h) using predictor (64) with m = 1, (i-l) using predictor (64) with m = 2, w1 = 1/2. The same color and shading scheme is used as in Fig. 4.

where the state x(k), the input u(k), and the output y(k) are
defined as

x(k) =
⎡

⎣
h̃(k)
ṽF(k)

ãdes(k − 1)

⎤

⎦ , u(k) = ṽL(k), y(k) = ṽF(k), (53)

and the coefficient matrices read

a0 =
⎡

⎢
⎣

1 −�t −1

2
�t2

0 1 �t
αV ′(h∗) a0,32 a0,33

⎤

⎥
⎦,

a0,32 = −αV ′(h∗)�t − (α + β),

a0,33 = −1

2
αV ′(h∗)�t2 − (α + β)�t,

b0 =
⎡

⎣
β0
0
0

⎤

⎦, b2 =
⎡

⎣
β2
0
0

⎤

⎦, b1 =
⎡

⎣
0
0

β + αV ′(h∗)�t

⎤

⎦,

c = [
0 1 0

]
, (54)

cf. (15)-(17). Note that in (52), b1 is the coefficient of u(k)
and not u(k − 1). This is due to the fact that the state was
augmented by the desired acceleration ades. Finally, the aug-
mented state-space representation is obtained from (54) with
X(k) = x(k), A1 = a0, B0 = b0, B1 = b1, B2 = b2, C1 = c
(cf. (18)-(20)).

The plant and the string stability of (52) can be analyzed
following the steps of Section IV. The z = 1, the z = −1,

and the z = eiθ , θ ∈ (0, π) plant stability boundaries are

α = 0, (55)

α = 2

�t
− β, (56)

α = −2 (cos(θ) − 1)

V ′(h∗)�t2 , β =
(
2 − V ′(h∗)�t

)
(cos(θ) − 1)

V ′(h∗)�t2 ,

(57)

respectively. The ωcr = 0 string stability boundaries read

α = 0, (58)

α = 2
(
V ′(h∗) − β + βV ′(h∗)�t

)

1 − 7 (V ′(h∗))2 �t2/6
, (59)

whereas for ωcr = (2k + 1)π/�t we get

β =
(
π2−(π2 + 1)V ′(h∗)2�t2

)
�t2α2−4π2�tα+4π2

2π2�t
((

V ′(h∗)�t−1
)
�tα+2

) .

(60)

The 0 < ωcr 	= (2k + 1)π/�t string stability boundaries
are given in the form of (32). These can only be obtained
numerically and they are not physically relevant in this case.

Fig. 8(a) presents the stability chart of the system with
processing delay compensation in the absence of packet loss.
The color and shading scheme is the same as in Fig. 4.
In comparison to Fig. 5(a), improvement can be observed both
in terms of plant and string stability owing to the processing
delay compensation.
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The value of the critical sampling period, above which string
stability cannot be guaranteed, can be obtained in closed form
using the same method as in Section IV and Appendix:

�tcr = 1

2V ′(h∗)
. (61)

Comparing this to (33), we can see that the critical sampling
period improves significantly, as it becomes 1.5 times larger
compared to the case where a zero-order-hold is used without
processing delay compensation. Therefore, the control loop
remains stable for smaller time gap (Th = 1/V ′(h∗)) between
the vehicles for a given sampling period.

We expect that the better stability properties are beneficial
even in the case of packet losses. In this case, the predictor
can rely only on the leader’s velocity and the headway of the
last available packet. For τ (k) − 1 consecutive packet losses,
the predictor becomes

v
Q
F (tk) = vF(tk−1) + ades(tk−2)�t,

v
Q
L (tk) = vL(tk−τ (k)),

hQ(tk) = h(tk−τ (k)) + (
vL(tk−τ (k)) − vF(tk−1)

)
�t

− 1

2
ades(tk−2)�t2, (62)

cf. (51).
Now we solve system (1), (50), (62) over [tk, tk+1), lin-

earize the resulting nonlinear discrete-time map, and assume
sinusoidal fluctuations (12) in the leader’s velocity. We get
the linear discrete-time map of the form (38)-(39) with slight
modifications: u

(
k − τ (k)

)
is replaced by u

(
k − τ (k)+1

)
, and

the last block of the state vector becomes x
(
k −n +1

)
instead

of x
(
k − n

)
. The nonzero blocks in the first row of Aτ (k) are

ã0 =
⎡

⎢
⎣

1 −�t −1

2
�t2

0 1 �t
0 a0,32 a0,33

⎤

⎥
⎦, ãτ =

⎡

⎣
0 0 0
0 0 0

αV ′(h∗) 0 0

⎤

⎦,

ã0,32 = −αV ′(h∗)�t − (α + β),

ã0,33 = −1

2
αV ′(h∗)�t2 − (α + β)�t, (63)

where ãτ is located in the τ (k)-th column of Aτ (k). Note that
ã0 + ãτ = a0, cf. (54) and (63). Matrices b0, b2, and bτ = b1
are given by (54).

The stability diagrams and the critical sampling period
can be determined by the method explained in Section IV.
Fig. 8(b,c,d) present the stability charts of the system with
processing delay compensation if every n-th packet is received,
n = 2, 3, 4. Notice the improvement in plant and string
stability compared to Fig. 5(b,c,d) – the proposed predictor
feedback concept is robust against the variations of time delay
caused by packet losses. The third row of Table I shows the
values of the critical sampling period for n = 1, 2, 3, 4. These
values are 1.5, 1.4, 1.58, 1.33 times larger, respectively, than
those corresponding to the case without processing delay com-
pensation. Thus, the critical sampling period improves even
under the variations of time delay due to packet losses, and
smaller time gap can be achieved between the vehicles for a
given sampling period. Note, however, that there is an increase
in the smallest gains that ensure string stability (indicated by

the red stars) compared to the case without processing delay
compensation, cf. Fig. 5.

Finally, the two predictive control strategies in Sections VI
and VII can be combined to compensate both the effect of
processing delay and the effect of packet losses. We use the
control law (50) with the prediction algorithm

v
Q
F (tk) = vF(tk−1) + ades(tk−2)�t,

v
Q
L (tk) = vP

L(tk−1),

hQ(tk) = hP(tk−1) + (
vP

L(tk−1) − vF(tk−1)
)
�t

− 1

2
ades(tk−2)�t2,

vP
L(tk−1) =

m∑

i=1

wivL(tk−τi (k)),

hP(tk−1) = h(tk−τ (k)) + vP
L(tk−1)(τ (k) − 1)�t

−
τ (k)−1∑

j=1

vF(tk− j−1) + vF(tk− j )

2
�t, (64)

cf. (45)-(46), (51), and (62). That is, now the leader’s velocity
is predicted (vP

L(tk−1)), the headway is corrected according
to the difference of distances the two vehicles travel during
the packet losses (hP(tk−1)), and also the follower’s velocity
and headway are predicted one sampling period ahead to
compensate the processing delay (v

Q
F (tk), hQ(tk)).

Solving (1), (50), (64) over [tk, tk+1), linearizing the result-
ing map, and assuming sinusoidal fluctuations (12) in the
leader’s velocity yields the form (47)-(49) where u

(
k − τi (k)

)

is replaced by u
(
k − τi (k)+ 1

)
, the nonzero blocks in the first

row of �Aτ (k) are shifted to the first τ (k) columns, and

aP =
⎡

⎣
0 0 0
0 0 0
0 −αV ′(h∗)�t 0

⎤

⎦,

bP
τ (k) =

⎡

⎣
0
0

αV ′(h∗)(τ (k) − 1)�t

⎤

⎦. (65)

Analyzing plant and string stability according to Section IV,
we obtain the stability charts shown in Fig. 8(e-l) if every
n-th packet is received (n = 1, 2, 3, 4). Again we chose
m = 1 and m = 2, w1 = 1/2 in the second and
the third rows, respectively. Comparing the results to those
in Fig. 5 and Fig. 8(a-d), we can see that both predictive
control strategies – headway and leader’s velocity prediction as
well as compensation of the processing delay – make improve-
ments in stability, even when these are applied together. The
weight w1 ≈ 1/2 is still an optimal choice in terms of the
size of the stable region. It is still true that string stability can
be guaranteed by smaller gains for m = 1 than for m = 2,
w1 = 1/2, see the red stars in Fig. 8(e-h) and Fig. 8(i-l).
Again, processing delay compensation increases the smallest
available control gains, cf. Fig. 5.

The dimensionless critical sampling period �tcr/Th as a
function of the weight w1 is depicted in Fig. 7(b) for the
improved predictor presented in this Section. Based on the
figure, the critical sampling period peaks around w1 ≈ 1.
Therefore, in order to increase the critical sampling period
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Fig. 9. Velocity response of a vehicle string with five followers (a,d) without predictor when every data packet is received (n = 1), (b,e) without predictor
when every third packet is received (n = 3), (c,f) using predictor (64) with m = 2, w1 = 2 when every third packet is received (n = 3). The first row
(a-c) shows the response to sinusoidal leader’s velocity fluctuations, the second row (d-f) presents the response in the case of a real traffic scenario.

for any n, or to increase the flux of the traffic flow for a
given �t , the best choice is w1 = 1, that is, simply using the
last available leader’s velocity as predicted value. The value
of the dimensionless critical sampling period �tcr/Th again
converges to 1/(n+1) as w1 → ∞. Therefore, we get the same
critical sampling period for w1 → ∞ as without processing
delay compensation, cf. the fourth row of Table I. Predicting
the leader’s velocity is beneficial in terms of the size of the
stable region, but only at the cost of the critical sampling
period. In summary, there is trade-off between the size of the
stable region, the critical sampling period, and the minimum
gains that ensure string stability when we choose between the
predictive control strategies (45)-(46), (51), and (64) and when
we select the parameters of the predictor.

Finally, the performance of the predictor is demonstrated
in Fig. 9 via numerical simulations of the nonlinear sys-
tem (50), (64). The first row of Fig. 9 shows the response
of five follower vehicles (the concatenation of five identical
leader-follower pairs with simultaneous packet losses) to sinu-
soidal fluctuations in the leader’s velocity assuming sampling
period �t = 100 [ms] and control gains α = 1.2 [1/s],
β = 1 [1/s]. This corresponds to a string stable scenario when
no data packets are lost (n = 1), see Fig. 9(a). According
to Fig. 9(b), the system becomes string unstable when packets
are lost (when every third packet is received, n = 3). The
application of predictor (64) with m = 2, w1 = 2 makes the
system string stable again as shown by Fig. 9(c). The second
row of Fig. 9 shows the velocity response with the same
control gains for a real traffic scenario where large fluctuations
occur in the leader’s velocity. It is again shown that string
stability may be lost due to packet losses, but predictors can
overcome this problem even in the case of large leader velocity
perturbations.

VIII. CONCLUSIONS

In this paper, we analyzed a communication-based control
strategy called connected cruise control (CCC) for vehicular
strings. We have shown that the application of digital con-
trollers introduces time-varying time delays in the control loop.
The communication between the vehicles is often influenced
by the loss of data packets, which increases the time delay.
We analyzed the effect of the increasing time delay on the plant
and the string stability of a connected vehicular string, and
we have shown that packet losses have destabilizing effects.
Namely, string stability cannot be achieved above a certain
critical value of the sampling period or, equivalently, there
exist a minimal achievable time gap between the vehicles for
a given sampling period. This puts a fundamental limit to the
achievable flux in the traffic flow of the connected vehicles.

Therefore, we proposed a method to overcome the desta-
bilizing effect of packet losses using data received earlier.
We demonstrated that predicting the leader’s velocity and
the headway, plant and string stability can be improved.
Furthermore, we presented a predictor to compensate the
processing delay of the digital controller. These modifica-
tions led to further improvements in the stability properties.
Combining the two above-mentioned strategies, the critical
sampling period of the controller and the maximum achievable
flux could be increased by a large extent, and the connected
cruise control became robust against the loss of data packets
during communication.

We remark that during the processing delay compensation
the model used for predicting the follower’s motion is assumed
to be accurate and that the desired acceleration is realized by
the follower. Analyzing the effect of modeling uncertainties
and inaccuracies in the implementation of the control law is
left for future research. Moreover, we kept the form of the
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controller as simple as possible and assumed simple packet
loss scenarios in order to highlight the potential of predictors.
Considering more detailed dynamical models of the vehicles,
investigating more complicated control strategies, and taking
into account stochastic packet loss scenarios are left for future
work.

APPENDIX

DERIVATION OF THE CRITICAL SAMPLING PERIOD

Using (17), (20), and (26), the magnitude ratio (27) can be
expressed by

M(ω) = N(ω)

D(ω)
, (66)

where

N2(ω) = 4
(
V̂ 2α̂2 + ω̂2β̂2)(1 − cos ω̂

)
,

D2(ω) =
(

10 + (
1 + V̂ α̂

)2 + (
1 + 2(α̂ + β̂)

)2
)
ω̂2

−
(

8 − (
1 − V̂ α̂

)2 + (
3 + 2(α̂ + β̂)

)2
)
ω̂2 cos ω̂

+ (
4 − 2V̂ α̂ + 12(α̂ + β̂)

)
ω̂2 cos

(
2ω̂

)

− ( − 2V̂ α̂ + 4(α̂ + β̂)
)
ω̂2 cos

(
3ω̂

)
, (67)

with α̂ = α�t , β̂ = β�t , ω̂ = ω�t , and V̂ = V ′(h∗)�t . This
allows us to obtain the string stability boundaries (29)-(32).

In Fig. 4(a), the intersection of (29) and (30) is marked
by I, the intersection of (29) and (32) is marked by II, while
the intersection of (30) and (32) is marked by III. Here we
show that I, II, III coincide at the critical sampling time given
by (33). From (29)-(30), the intersection I of the two ωcr = 0
string stability boundaries is at (β, α) = (V ′(h∗), 0). In the
case of the other two intersection points II and III, a string
stability boundary associated with 0 < ωcr 	= (2k + 1)π/�t
emanates from a ωcr = 0 boundary. Therefore, we can
find the two points in question by taking ωcr → 0 for the
boundary defined by (32). However, conditions M(0) = 1
and M ′(0) = 0 are not sufficient to find the two branch-off
points, since they hold for any β and α. Besides, each point
of the ωcr = 0 string stability boundaries satisfies M ′′(0) = 0.
Thus, the intersection points II and III satisfy M ′′′(0) = 0.
Introducing

Q(ω) = N2(ω) − D2(ω), (68)

conditions M ′′(0) = 0 and M ′′′(0) = 0 are equivalent
to Q(4)(0) = 0 and Q(6)(0) = 0, which can be solved
more conveniently. Since α = 0 is a solution of Q(4)(0) = 0,
cf. (29), we can determine the intersection point II by solv-
ing Q(6)(0)

∣
∣
α=0 = 0, which gives β = 1/(3�t). The points

(V ′(h∗), 0) and (1/(3�t), 0) coincide for the critical sampling
period given by (33). It can be shown that the branch-off
point III defined by Q(4)(0) = 0 and Q(6)(0) = 0 also
coincides with these two points when (33) holds.
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